目的 设计合成以槲皮素为母核,引入基团为烯丙基或异戊烯基的系列槲皮素衍生物,并对其进行体外抗肿瘤活性研究。方法 以槲皮素(化合物1)为起始物,通过成醚反应合成目标化合物2、3、4、5、6、7、8。分别以人肺癌细胞A549、人乳腺癌细胞MDA-MB-231、人肝癌细胞HepG2为靶细胞,采用MTT法对所合成的化合物进行体外抗肿瘤活性评价。结果 合成了两个烯丙基取代、5个异戊烯基取代的槲皮素衍生物,其中5个为新化合物(4,5,6,7,8),其结构经1H-NMR、13C-NMR表征。部分化合物对所选肿瘤细胞的增殖有较强的抑制作用:其中化合物6对肿瘤细胞A549、MDA-MB-231和HepG2均具有较显著的抗增殖活性,IC50值分别为15.23、16.56、12.32 μmol·L-1;化合物7对肿瘤细胞A549、MDA-MB-231具有较显著的抗增殖活性,IC50值分别为8.92、2.90 μmol·L-1。结论 槲皮素引入异戊烯基合成的化合物6和7具有显著的抗肿瘤活性,具有进一步研究的意义。
Abstract
OBJECTIVE To design and synthesize series of quercetin derivatives by introducing allyl or prenyl groups and investigate their antitumor activities in vitro.METHODS Compounds 2, 3, 4, 5, 6, 7 and 8 were synthesized with quercetin as starting material through the etherification reaction.The antitumor activities were evaluated by MTT assay against human lung cells (A549), human breast cancer cells (MDA-MB-231), and human hepatoma cells (HepG2).RESULTS Two allyl-substituted and five prenyl-substituted quercetin derivatives were synthesized. Compounds 4, 5, 6, 7, and 8 were new compounds, and their structures were characterized by 1H-NMR and 13C-NMR. Compounds 6 and 7 exhibited observable anti-proliferative activity. Compound 6 inhibited the growth of A549, MDA-MB-231, and HepG2 cells with IC50 values of 15.23, 16.56, and 12.32 μmol·L-1, respectively.Compound 7 restrained the growth of A549 and MDA-MB-231 cells with IC50 values of 8.92 and 2.90 μmol·L-1, respectively. CONCLUSION Compounds 6 and 7 synthesized by introducing prenyl groups into quercetin have significant anti-tumor activities, which are worth of further research.
关键词
槲皮素 /
烯丙基 /
异戊烯基 /
抗肿瘤活性
{{custom_keyword}} /
Key words
quercetin /
allyl group /
prenyl group /
anti-tumor activity
{{custom_keyword}} /
中图分类号:
R284
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIANG H, XIANG Z H, MA T X, et al. Synthesis and antioxidant activities of novel chalcone FMC and its analogues[J]. Chin Pharm J(中国药学杂志), 2014, 49(21):1939-1944.
[2] NIKAIDOD T, KINOSHITA T, SANKAWA U, et al. Inhibition of adenosine 3', 5'-cyclic monophosphate phosphodiesterase by flavonoids. Ⅲ[J]. Chem Pharm Bull, 1989, 37(5):1392-1395.
[3] WANG P, VADGAMA J V, SAID J W, et al. Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea[J]. J Nutr Biochem, 2014, 25(1):73-80.
[4] NIU G, YIN S, XIE S, et al. Quercetin induces apoptosis by activating caspase-3 and regulating Bcl-2 and cyclooxygenase-2 pathways in human HL-60 cells[J]. Acta Biochim Biophys Sin, 2011, 43(1):30-37.
[5] AMARAL S, MIRA L, NOFUEIRA J M, et al. Plant extracts with anti-inflammatory properties a new approach for characterization of their bioactive compounds andestablishment of structure -antioxidant activity relationships[J]. Bioorg Med Chem, 2009, 17(5):1876-1879.
[6] AlIA M, MATEOS R, RAMOS S, et al. Influence of quercetin and rutinongrowth and antioxidant defense system of a human hepatoma cell line HepG2[J]. Eur J Nutr, 2006, 45(1):19-28.
[7] QIN X R, ZHANG M J, GAO X N, et al. Study on the antibacterial activity of quercetin[J]. Chem Bioengineer(化学与生物工程), 2009, 26(4):55-57.
[8] GARCIA M V, CRESPO I, XOLLADO P S, et al. The anti-inflammatory flavonesquercetinand kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells [J]. Eur J Pharmacol, 2007, 557(2-3):221-229.
[9] LOKE W M, PROUDFOOT J M, STEWART S, et al. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin:lack of association between antioxidant and lipoxygenase inhibitory activity[J]. Biochem Pharmacol, 2008, 75(5):1045-1053.
[10] ZHANG M S H, XU C H Q, WANG X L, et al. Effects of quercetin on experimental arrhythmias[J]. J Harbin Med Univ(哈尔滨医科大学学报), 2007, 41(2):115-121.
[11] ZHOU F, PAN Y, HUANG Z, et al. Visfatin induces cholesterol accumulationin macrophages through up-regulation of scavenger receptor-A and CD36 [J]. Cell Stress Chaperones, 2013, 18(5):643-652.
[12] ZOU L H. Studies on synthesis of citrus polymethoxyflavonoids flavonoid-glucoside derivatives [D]. Changsha:Hunan University, 2009.
[13] CHEN H. The study on synthesis of new physiological active flavonoids and flavone-O-glucosides[D]. Changsha:Hunan University, 2006.
[14] FU L Y. Studies on synthesis of new flavonoid vinyl ether derivatives and flavonoid glycoconjugate from hesperidin [D]. Changsha:Hunan University, 2011.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}